Folia polipropylenowa, folia poliestrowa, bariera ogniowa 3M FRB, papier aramidowy Nomex, folia poliamidowa, mika: stemple i taśmy Dzięki wysokiej odporności na rozdarcie, niskiemu wydłużeniu i dobrej izolacji papier izolacyjny jest szeroko stosowany jako materiał izolacyjny w silnikach, kablach, kondensatorach i transformatorach, a także jest głównym składnikiem materiałów izolacyjnych, takich jak produkty laminowane, materiały kompozytowe i materiały prepregowe. Purios HO to piana poliuretanowa o strukturze zamkniętych komórek, stosowana do produkcji sztywnej pianki natryskowej. System posiada w swoim składzie środek spieniający nowej generacji (HFO) o potencjale zubożenia warstwy ozonowej (ODP) równym zero oraz niskim współczynniku ocieplenia globalnego (GWP). Purios HO charakteryzuje się Ich gęstość wynosi do 115 kg/m 3, przez co charakteryzują się dobrą izolacyjnością termiczną. Materiał ten może być stosowany jako izolacja termiczna ścian zewnętrznych (również od wewnątrz), stropów i dachów. Z powodu niewielkiej gęstości jest on małoodporny na ściskanie, jednakże jest bardzo łatwy w obróbce i niepalny. W tym miejscu po raz kolejny widać, jak istotna jest gładka, zagęszczona struktura styroduru. Co do zasady, im grubszy jest materiał izolacyjny, tym mniej ciepła oddaje z pomieszczenia. Jednak zwarta forma płyty XPS sprawia, że jej opór cieplny jest podobny jak w przypadku dużo grubszej warstwy styropianu i wynosi około 0,5-1,15 m⊃2 Zastosowanie tworzyw sztucznych w elektrotechnice. Obecnie do wykonywania izolacji, a także powłoki kabli wykorzystuje się zmiękczony PVC i polietylen. Dzięki temu, że elementy te charakteryzują się dużą odpornością na wodę i czynniki chemiczne, mogą być układane na ziemi bez stosowania dodatkowych osłon – podkreśla Igelit – tworzywo sztuczne uzyskiwane w procesie polimeryzacji chlorku winylu i estrów kwasu akrylowego . Prawa do nazwy Igelit należały do niemieckiego koncernu chemicznego IG Farben. Znalazł zastosowanie w elektrotechnice jako materiał izolacyjny w postaci osłon przewodów elektrycznych i kabli elektrycznych, a także w budownictwie do pokrywania nawierzchni skoczni narciarskich nRqqake. Wykład 1 Materiały przewodzące są najczęściej metalowi. W tych materiałach występują wiązania metaliczne w których elektrony walencyjne są słabo związane z jądrem i są wspólne dla całego kryształu. Duże przewodnictwo metali wynika z możliwości swobodnego przemieszczania się elektronów (gaz elektronowy) w całej objętości materiału. Żależnośc przewodności matali od temperatury:  Wzrost t przewodnika powoduje zwiększenie amplitudy drgań węzłów sieci krystalicznej czego skutkiem jest wzrost prawdopodobieństwa zdarzeń elektronów z atomami.  Powoduje to zmniejszenie ruchliwości elektronów czego skutkiem jest wzrost rezystywnosci metalu.  Jednostkowo zmiana rezystywności matalu jest proporcjonalna do wartości rezystywności pomnożonej przez współczynnik proporcjonalności .  - współczynnik temperaturowy rezystywności. W zakresie temperatur eksploatacyjnych dla przewodników ( - 30c do +200) zmiany rezystywności można określić za pomocą wzoru:  = 20 (1+*T) Dla większości matali wartość rezystywności wzrasta wraz ze wzrostem t, dlatego współczynnik temperaturowy  jest większy od 0. W pewnych przypadkach może również być ujemny. Współczynnik temperaturowy rezystywności  jest zależny od t ale w zakresie ( - 30c do +200) ze względu na bardzo małe zmiany wartości można to pominąć:  = 20 [1+ 20 (20)] , gdzie t – temperatura, 20 - rezystywność materiału w t = 20, 20 – odniesiony do t = 20. Do obliczeń wartość  przyjmuje się z tabel.  dla wybranych czystych materiałów: Srebro  = 0,004 1/K Miedź  = 0,0041 1/K Aluminium  = 0,0040 1/K Żelazo  = 0,0059 1/K W zakresie bardzo wysokich t zmiany rezystywności mają charakter skokowy. W zakresie bardzo wysokich t występuje zjawisko nadprzepodnictwa. Zależność rezystywności miedźi od t Przewodnictwo stopów Stopy jednorodne – jednolita sieć krystaliczna, współczynnik  może byc niższy niż dla matali składowych. Przewody elektryczne, z którymi spotykamy się bezpośrednio na co dzień, z racji zachowania bezpieczeństwa i w celu przedłużenia czasu działania powlekane są odpowiednią izolacją. Jakie materiały mogą być zastosowane w roli izolatorów? Przewód elektryczny składa się z materiału przewodzącego, jakim najczęściej jest miedź i aluminium. Może być izolowany lub nie – z tym drugim przypadkiem spotykamy się, widząc linie napowietrzne – tutaj rolę izolatora pełni powietrze. Kable elektryczne pokryte są warstwą izolacji, która pełni następujące funkcje ochronne: - przed porażeniem prądem elektrycznym, - przed uszkodzeniami mechanicznymi, - przed wilgocią, - przed szkodliwym działaniem różnych substancji. Izolacja spełnia jeszcze jedną rolę – dzięki temu, że do jej użycia mogą być zastosowane zabarwione materiały, kolor oraz oznaczenia na nim informują nas o tym, z jakim przewodem mamy do czynienia. Spotykamy się z tym w przypadku wymiany gniazdka wtykowego – poszczególne przewody (fazowy, neutralny i uziemienia ochronnego) są umieszczone w izolacji w kolorach: - przewód fazowy – czerwony lub czarny lub brązowy, - przewód neutralny – niebieski, - przewód uziemienia ochronnego – dwukolorowy, żółto-niebieski. Oprócz kolorów, na izolowanych przewodach elektrycznych spotykamy również symbole składające się z kombinacji liter i cyfr. Uwzględniony jest tutaj materiał przewodzący – miedź (D), aluminium (A), stal (F), przeznaczenie – mieszkaniowe (M), warsztatowe (W), sterownicze (St), a także typ przewodu, przykładowo wielodrutowa linka ocynowana to Lc, a jednodrutowa miedziana to Dc. Spotykamy również oznaczenia bardziej szczegółowe – przewód płaski ma symbol p, przewód do przyklejania to pp, a wtynkowy – t. Każdy typ izolacji ma swoje własne oznaczenie: - guma zwykła G, - guma silikonowa Gs, - tworzywo bezhalogenowe N lub H, - polietylen sieciowany XS, - tworzywo fluoroorganiczne Zb, - powłoka poliwinitowa Y, - powłoka poliwinitowa ciepłoodporna Yc. Dzięki temu, że osobnym symbolem oznaczona jest też liczba żył i ich przekroje, widząc izolację i odczytując prawidłowo informacje zawarte w ciągu cyfr i liter, wiemy, z jakim przewodem i do czego służącym mamy do czynienia. Please add exception to AdBlock for If you watch the ads, you support portal and users. Thank you very much for proposing a new subject! After verifying you will receive points! michuu213 01 Dec 2012 18:59 3453 #1 01 Dec 2012 18:59 michuu213 michuu213 Level 9 #1 01 Dec 2012 18:59 Witam ma ktoś może gdzieś jakiś referat na temat Materiały stosowane w elektryce: Z podziałem na - Metale (stal) żelazo - Metale kolorowe - Tworzywa sztuczne: izolacyjne , przewodzące - Ceramika - Kompozyty Szukałem w google i na różnych forach ale są tylko wiadomości o półprzewodnikach , coś takiego. Ale to mi nie przyda się . Bardzo proszę o pomoc . Z góry dziękuję . #2 01 Dec 2012 19:37 zibo50 zibo50 Level 17 #2 01 Dec 2012 19:37 Poszukaj sobie coś o tematyce materiałoznawstwo jest tego mnóstwo. #3 01 Dec 2012 21:48 jarek_lnx jarek_lnx Level 43 #3 01 Dec 2012 21:48 Poszukaj jakiejś książki do materiałoznawstwa, będziesz miał systematycznie poukładane, w internecie jest śmietnik i żeby coś znaleźć trzeba wiedzieć czego się szuka i umieć ocenić to co się znalazło. Czy półprzewodniki to nie są materiały stosowane w elektryce? Częściej spotykane są w elektronice, ale czy grzałki sylitowej albo odgromnika warystorowego (warystora dużej mocy) nie zaliczysz do urządzeń elektrycznych, elektronicznymi na raczej nie są, a krzem, węglik krzemu, czy tlenek cynku to półprzewodniki. W ogóle nie wspomniałeś o materiałach ciekłych czy gazowych. #4 02 Dec 2012 18:37 elktromonter elktromonter Level 14 #4 02 Dec 2012 18:37 Polecam książkę Zdzisława Celińskiego Materiałoznawstwo elektrotechniczne. Książka powinna być również w necie w formie pdf. #5 02 Dec 2012 18:47 Szaman7 Szaman7 Level 25 #5 02 Dec 2012 18:47 Kolego, nikt za Ciebie nie zrobi referatu. Trochę inwencji twórczej. #6 02 Dec 2012 22:25 michuu213 michuu213 Level 9 #6 02 Dec 2012 22:25 Dziękuję wszystkim za porady . Nie chciałem aby ktoś za mnie napisał referat , tylko pokierował mnie - w jaki sposób i co ująć w referacie . Po trudzie oto moje wypociny Może ktoś mnie poprawi lub da radę czy ten referat jest dobrze napisany. Dziękuję #7 03 Dec 2012 12:24 luke666 luke666 Level 33 #7 03 Dec 2012 12:24 Brakuje zestawienia właściwości fizycznych przewodników w tabeli (przewodność elektryczna, cieplna, gęstość, ciepło właściwe). Reszta (tzn to, co zrobiłeś) to zwykłe przepisywanie z internetu każdej wiadomości, która wpadła pod kursor (zasada im więcej tym lepiej nie zawsze jest dobrze oceniana). #8 03 Dec 2012 15:33 jarek_lnx jarek_lnx Level 43 #8 03 Dec 2012 15:33 20 stron i większość nie na temat, jedynie przy polimerach jest coś o zastosowaniach w elektrotechnice, widać że to bezmyślne kopiowanie, 0 pracy własnej, jak bym był nauczycielem nie wahał bym się postawić najniższą możliwą ocenę. Moim zdaniem lepiej było by przyjąć inną klasyfikację, wg zastosowań w elektrotechnice: -materiały przewodzące (jakie się stosuje, kiedy i dlaczego, zauważ że inne materiały się stosuje na przewody, inne na szczotki w silniku, inne na styczki wyłącznika) -materiały oporowe (duża grupa stopów o których nic nie wspomniałeś) -materiały izolacyjne (zależnie od zastosowania inne na izolację przewodów, inne na izolację w transformatorach, inne do elementów grzewczych, inne na dielektryki kondensatorów) -materiały magnetyczne wspomniałeś o składzie blachy krzemowej dlaczego taki się stosuje jakie właściwości poprawia dodatek krzemu? a inne stopy magnetyczne? Absurdem jest pisanie o węglikach spiekanych, stali łożyskowej, albo stalach narzędziowych szybkotnących. Zacznij od wywalenia wszystkiego co jest nie na temat. #9 03 Dec 2012 20:34 michuu213 michuu213 Level 9 Właściwa izolacja termiczna to bardzo ważna kwestia w budownictwie. Równie ważny jest także dobór odpowiedniego materiału. Poniżej przedstawimy różne rodzaje materiałów do ocieplania budynków dostępnych na popularna nazwa polistyrenu ekspandowanego. Wykazuje dobre właściwości termoizolacyjne, gorzej jednak tłumi dźwięki. Dzięki swojej niewielkiej nasiąkliwości jest stosunkowo odporny na wilgoć i szybko wysycha. Jego minusem jest stosunkowo niska odporność na ogień, promieniowanie UV i niektóre chemikalia. Znajduje zastosowanie w ociepleniach ścian murowanych, fundamentów, stropów, dachów płaskich i tarasów. Styropian wykorzystywany jest w następujących produktach:Płyty tradycyjne — standardowe płyty o gładkich krawędziach, nierzadko też o powierzchni zwiększającej przyczepność tynku lub elastyczne — używane do wygłuszania dźwięków uderzeniowych w stropach (np. po upadku na podłogę czegoś ciężkiego). Nie nadają się jednak do tłumienia dźwięków powietrznych jak rozmowy czy głośna sprężyste — posiadają specjalne, fabrycznie wykonane nacięcia, dzięki czemu nadają się do ocieplania drewnianych płyty — materiały o podwyższonej szczelności cieplnej dzięki domieszce grafitu. Mają niewielką gęstość i stosuje się je do ocieplania zewnętrznych wodoodporne — materiały o zwiększonej spoistości, dzięki czemu wykazują jeszcze mniejszą nasiąkliwość rzędu 1-2% nawet przy długotrwałym kontakcie z perforowane — posiadają specjalne kanaliki umożliwiające odprowadzanie pary wodnej. Dzięki temu świetnie nadają się do ocieplania murowanych ryflowane — posiadają równoległe rowkowate nacięcia umożliwiające odprowadzenie wody (powstałej podczas skraplania pary wodnej), dzięki czemu dodatkowo zabezpieczają przed zawilgoceniem i umożliwiają wentylację zabezpieczonej nimi powierzchni. Najczęściej stosuje się je do ocieplania tarasów, ścian piwnic oraz dachów odwróconych. Dostępne są także w wersji z wyścieleniem rowków agrowłókniną chroniącą je przed zatkaniem laminowane — posiadają dodatkową warstwę folii aluminiowej lub maty refleksyjnej, która umożliwia zastosowanie ich do izolacji pod elektryczne ogrzewanie zespolone z papą — wykorzystywane głównie do ocieplania dachów płaskich, rzadziej używa się ich do ścian ze styropianu i papy — ich zrolowana postać znacznie ułatwia ocieplanie płaskich zespolone z papą gipsowo-włóknową/gipsowo-kartonową — wykorzystywane do ocieplania ścian i skosów — styropian w luźnej postaci, stosowany głównie do stropodachów i nieużytkowych poddaszy. Ze względu na niższą izolacyjność od formy płytowej, musi być układany w grubszych mineralnaProdukty z wełny mineralnej odznaczają się dobrymi właściwościami akustycznymi i szczelnością cieplną. Wykazują odporność na ogień, ale także przepuszczają wodę i mogą nasiąkać. Wykorzystuje się je w głównej mierze do ocieplania dachów płaskich, stropów, ścian i poddaszy. Świetnie nadają się także do wygłuszania stropów między piętrami, ścian działowych oraz sufitów podwieszanych. Z wełny mineralnej wytwarza się następujące materiały:Płyty tradycyjne — produkowane w różnych grubościach i rozmiarach. Nasącza się je fabrycznie impregnatem, aby zmniejszyć nasiąkliwość. Zasadniczo występują w trzech odmianach:sprężyste (miękkie lub średnio twarde) — mogą występować także w formie rolowanej. Używa się ich do ociepleń wentylowanych stropodachów, poddaszy, ścian szkieletowych i murowanych, a także do wypełnień ścian działowych oraz wygłuszania sufitów podwieszanych i drewnianych — odznaczają się nieco mniejszym uszczelnieniem cieplnym, ale są mniej nasiąkliwe niż miękkie płyty. Stosuje się je do wyciszania stropów oraz ociepleń ścian, tarasów i balkonów, a nawet podłóg na gruncie i płyt — łączą w sobie cechy obu powyższych form i służą głównie do ocieplania dachów z folią aluminiową — dodatkowa warstwa pełni w nich rolę paroizolacji. Wykorzystuje się je do ocieplania poddaszy użytkowych. Warstwa folii może być w nich zastąpiona powlekanym polietylenem papierem. Odmiana wysokotemperaturowa służy do termicznego uszczelniania kominków z żeliwnymi lamelowe — od tradycyjnych odróżnia je prostopadłe do powierzchni płyty ułożenie włókien. Zmniejsza to nieco szczelność termiczną takich płyt, ale dodaje im elastyczności i wytrzymałości, dzięki czemu nadają się idealnie do ocieplania powierzchni łukowych. Stosuje się je głównie do ocieplania ścian systemu z welonem szklanym — welon ten chroni materiał przed wilgocią, zabezpiecza go przed wywiewaniem z niego włókien i usztywnia go. Stosowane przede wszystkim do ścian trójwarstwowych i ociepleń metodą lekko i filce — wykazują większą sprężystość i miękkość niż płyty. Sprawdzają się przy ocieplaniu stropodachów wentylowanych, ścian szkieletowych i poddaszy, a także wygłuszaniu ścian działowych, drewnianych stropów i sufitów — produkowany z myślą o uszczelnianiu nadmuchowym i nadaje się idealnie do ocieplania miejsc ofertę materiałów izolacyjnych wysokotemperaturowych możesz znaleźć tutaj: wyżej włókno mineralne i styropian to oczywiście nie wszystkie materiały, z których wytwarza się ocieplenia. Na rynku można znaleźć także nowocześniejsze tworzywa, a nawet surowce pochodzenia organicznego. Oto kilka z nich:Perlit — ma formę suchej zasypki. Wykorzystuje się go przede wszystkim do produkcji ciepłochronnych zapraw tynkarskich i murarskich. Wykazuje dużą trwałość, odporność na wilgoć i mróz. Trzeba jednak pamiętać, aby nie mieszać go zbyt długo w betoniarce, gdyż jest stosunkowo kruchy i może ulec — są to wypalane z gliny, porowate i twarde kulki. Po impregnacji wykorzystuje się je do ocieplania podłóg na gruncie. Trwałość tego keramzytu jest porównywalna z ceramicznymi materiałami, nie stanowi on też pożywki dla pleśni i grzybów. Wykonuje się z niego zazwyczaj uszczelnienia w formie zasypki o grubości warstwy ok. 15 — granulat powstały ze spiekania miału węglowego, bentonitu i lotnych popiołów. Wykorzystywany w ciepłych zaprawach na podłogi i ściany. Wymaga dość grubych warstw, np. dla podłogi na gruncie będzie to nawet 40 kokosowe — służą do tworzenia podkładów pod wylewki lub wypełnień pustek między legarami podniesionych podłóg. Płyty i maty kokosowe cechuje dobra szczelność termiczna. Choć są palne, nie przenoszą płomienia dalej. Podatność na ogień można zmniejszyć, stosując specjalną drzewne — materiały wykonane z tego surowca dobra szczelność cieplna. Bardzo skutecznie tłumią także dźwięki i to zarówno uderzeniowe, jak i powietrzne. W postaci luźnych włókien wykonuje się z nich wdmuchiwane uszczelnienia między elementami konstrukcyjnymi ścian lub dachów oraz trudno dostępnych miejsc. Najczęściej jednak stosuje się ocieplenia z płyt, które są odporne na środki chemiczne jak np. silikon. Poza tym można zaimpregnować przed wilgocią, co czyni z nich dobry materiał na ocieplenie dachów i ścian stropów. Dodatkowo produkuje się z nich także maty, przy których użyciu można wykonać ocieplenie poddasza przy zachowaniu widoczności krokwi. Stosuje się je także w budownictwie celulozowe — używa się ich głównie do ociepleń trudno dostępnych przestrzeni, gdzie niemożliwe jest poprawne ułożenie tradycyjnych materiałów — wdmuchuje się je z użyciem specjalnej maszyny. Można nimi z powodzeniem ocieplać ściany. Dostępne na rynku materiały tego typu są odpowiednio zaimpregnowane przed szkodnikami, ogniem, grzybami i gniciem. Są trwałe, a potraktowane ogniem nie płoną, lecz ulegają zwęgleniu, nie wydzielając przy tym trujących substancji. Wypełnienia te dobrze tłumią dźwięk i umożliwiają wymianę gazową. Dzięki temu nie zatrzymują nadmiaru wilgoci i nie wymagają stosowania konopi — produkowane z nich maty wykazują dużą sprężystość, dzięki czemu można je w prosty sposób montować między elementy konstrukcyjne na wcisk bez dodatkowego mocowania. Produkuje się z nich także lekkie i sprężyste płyty z dodatkiem paździerzy, które można układać na poszyciu i mocować wkrętami. Umożliwia to ocieplenie użytkowego poddasza z zachowaniem widoczności krokwi. Cechują się dobrą szczelnością owcza — można ją kupić w belach lub jako sznury do uszczelniania drzwi i okien. Służące do ocieplania podłóg maty z tego surowca mogą mieć papierowe laminowania. Wykazuje podobne do wełny mineralnej właściwości termoizolacyjne i układa się podobnie do niej. Dzięki jej sprężystości można nią bardzo łatwo wypełnić uszczelnianą przestrzeń. Ocieplenie z niej wykonane jest trwałe, a w przypadku zawilgocenia można je wysuszyć i ponownie spienione — wodoszczelne i niepalne, cechujące się dobrą wytrzymałością na ściskanie. Jest odporne na grzyby, pleśnie i gryzonie. Pod względem odporności chemicznej jest podobne do zwykłego szkła. Ocieplenie z płyt z niego wykonanych robi się stosunkowo łatwo — da się je przyklejać preparatami parametry materiałów izolacyjnychWyróżnia się trzy podstawowe parametry:Współczynnik przewodzenia ciepła λ — określa, czy dany materiał cechują dobre właściwości termoizolacyjne. Im mniejsza jest jego wartość, tym słabiej przewodzone jest ciepło i lepsza szczelność cieplna materiału. Wyrażany jest w W/(mK). Najskuteczniej izolują materiały o współczynniku około 0,03 W/(mK).Opór termiczny R — wyraża izolacyjność względem grubości materiału. Jest tym wyższy, im większa jest szczelność cieplna danego materiału. Oblicza się go, dzieląc grubość wyrobu podaną w metrach przez współczynnik przewodzenia ciepła. Jednostką jest tutaj (m²•K)/ przenikania ciepła U — wyraża ilość ciepła przenikającą przez konkretną przegrodę w ciągu jednej sekundy przy różnicy temperatur po obu jej stronach równej 1°C. Podaje się go w W/(m²•K). Szczelność cieplna danej przegrody jest tym gorsza, im wyższa jest wartość dostępnych na rynku materiałów izolacyjnych sprawia, że wybór odpowiedniego dla naszych potrzeb może być dość kłopotliwy. Warto więc się dobrze zastanowić i zasięgnąć rady fachowców. Z elektrycznością stykasz się wszędzie. Poznajesz coraz więcej skutków jej oddziaływania. Na przykład, pierwotnych ludzi przerażała błyskawica, uderzenie pioruna, jego niszczycielskie skutki. Te wielkie wyładowania elektryczne nam już są dobrze znane. Boimy się burzy, ale wiemy, że choć moc elektryczna wyładowań atmosferycznych jest olbrzymia, to jednak - ze względu na krótki czas tych wyładowań - ich energia nie jest duża. Nie opłaca się nawet korzystać z tego naturalnego źródła energii elektrycznej. Musimy natomiast coraz lepiej zapobiegać negatywnym skutkom wyładowań elektrycznych. Pierwszy zadbał o to Benjamin Franklin w roku 1752, instalując na wieży kościoła piorunochron. Uczeni ciągle odkrywają coś nowego z zakresu elektryczności i dają tym podstawy do konstruowania coraz to lepszych urządzeń. Świadectwem tego jest bardzo szybki rozwój elektroniki, komputerów, różne­go sprzętu elektronicznego i elektrycznego. Na pewno chcesz, żeby urządzenia, z którymi stykasz się na co dzień, nie były Ci obce, nieprzyjazne, a nawet czasem niebezpieczne. Musisz wiedzieć, że ta pożyteczna elektryczność, która jest w domu, w każdym gniazdku elektrycznym, dostępna dla każdego, może człowieka porazić. Doprowadzona do urządzenia duża energia pomaga Ci pracować, uwalnia od fizycznego wysiłku. Ale czasem wymyka się spod Twojej kontroli, zwłaszcza wtedy, kiedy popełnisz błąd w obsłudze sprzętu elektrycznego. Tylko wiedza i umiejętności praktyczne z zakresu elektrotechniki mogą Cię ustrzec przed wypadkiem. Wiedzę tę będziesz czerpał z różnych źródeł. Na lekcjach fizyki poznasz fizyczne podstawy elektrotechniki i elektroniki, a na lekcjach techniki zetkniesz się z różnymi sytuacjami, w których zjawiska te będą miały zastosowanie praktyczne. Na zajęciach z techniki będziesz poznawał elektrotechnikę począwszy od przewodników i izolatorów, potem dowiesz się, jak się wytwarza energię elektryczną. Poznasz sposoby korzystania z tej energii. Zadania praktyczne będą dotyczyły obsługi urządzeń, montażu bardzo prostych przedmiotów technicznych i projektowania elementarnych układów lub zmian w układach. Pomiary elektryczne będą związane głównie z zadaniami praktycznymi, a zagadnienia bhp, ekonomii i ekologii będą powiązane z różnymi tematami zajęć. PRZEWODNIKI ELEKTRYCZNOŚCI I IZOLATORY W elektrotechnice stosuje się wiele różnych materiałów. Ogólnie można je podzielić na trzy grupy: przewodzące prąd elektryczny (przewodniki), nie przewodzące prądu elektrycznego (izolatory), półprzewodniki. Do materiałów przewodzących prąd elektryczny należą metale, np. srebro, miedź, aluminium, mosiądz, stal i stopy oporowe. Do materiałów nie przewodzących prądu elektrycznego należą np. ceramika, jedwab, papier, oleje, powietrze. Sądzę, że podasz jeszcze więcej przykładów tych materiałów. Może też wyróżnisz z nich takie materiały, które przewodzą prąd elektryczny bardzo dobrze i takie, które przewodzą gorzej, a także bardzo dobre izolatory Przewodniki elektryczności Z materiałów przewodzących prąd elektryczny na pewno wyróżniłeś miedź i jej stopy, gdyż ze względu na swoje cenne właściwości (przede wszystkim małą oporność właściwą) należą one do materiałów najszerzej stosowanych w przemyśle elektrotechnicznym. Około połowy światowego zużycia miedzi przeznaczone jest na cele tego przemysłu. Każdy materiał przewodzący prąd elektryczny ma swoją określoną rezystancję (w fizyce stosuje się określenie: oporność elektryczna). Jednak wartość tej rezystancji rośnie w funkcji temperatury. Na przykład rezystywność (oporność właściwa) wolframu wynosi w temperaturze 20 °C - 0,055 [Omm2/m], w temperaturze 1200 °C - 0,4[Omm2/m],a w temperaturze 2400 °C - 0,85[Omm2/m]. W temperaturach bardzo niskich, bliskich zeru bezwzględnemu, nie­które ciała tracą rezystancję. Stają się nadprzewodnikami. Prowadzi się badania naukowe w zakresie nadprzewodnictwa w celu wykorzystania tego zjawiska w technice. Elektrotechników interesują nie tylko materiały o małej rezystywności. Wykorzystują oni również materiały, które mają wyższe od miedzi rezystywności, np. konstantan (Cu 55% i Ni 45%) - 0,458[Omm2/m], Konstantan i inne materiały oporowe stosowane są w różnych grzejnikach. Materiały oporowe, ze względu na różne temperatury pracy dzieli się na trzy grupy. Do pierwszej grupy należą materiały o niskiej temperaturze pracy (do 500 °C),do drugiej - o średniej (500-s-lOOO °C) i trzeciej - o wysokiej temperaturze pracy (powyżej 1000 °C). Na przykład stosowana w grzejnikach chromonikielina (Ni 80% i Cr 20%) ma temperaturę topnienia 1400 °C, a najwyższą temperaturę zastosowania 1150 °C. i gorsze izolatory. Tkaniny grzejne stosowane na poduszki i kołdry elektryczne zawierają cienki drut oporowy z konstantatu lub chromonikieliny owinięty śrubowo na nici szklanej. Pytania i zadania 1. Czy znasz metale lepiej przewodzące prąd elektryczny niż miedź? 2. Na jakie grupy możesz podzielić materiały oporowe? 3. Wymień urządzenia elektryczne, w których są zastosowane materiały oporowe. 4. Jaką moc mają urządzenia w Twoim domu, w których zastosowano grzałki elektryczne? Izolatory Znaczenie materiałów izolacyjnych w elektrotechnice jest ogromne, ponieważ mają one za zadanie przeciwdziałać przepływowi prądu elektrycznego w niepożądanym kierunku. W gospodarstwie domowym lekceważymy często izolacyjne elementy urządzeń elektrycznych i z tego powodu dochodzi do wielu wypadków, porażeń prądem elektrycznym, poparzeń i pożarów. Istnieje wiele materiałów izolacyjnych pochodzenia roślinnego, zwierzęcego i mineralnego, również z tworzyw syntetycznych. Ich klasyfikację można przeprowadzić na podstawie różnych kryteriów. Ze względu na stan skupienia oraz pochodzenie materiały te można podzielić na: gazowe, płynne i stałe. Inny sposób klasyfikacji opiera się na odporności materiałów izolacyjnych na temperaturę. Okres trwałości właściwości izolacyjnych zależy bowiem od rodzaju materiału i od temperatury pracy. Na przykład obniżenie temperatury pracy o 8 °C - w stosunku do temperatury znamionowej - dla izolacji bawełnianej, papierowej nasyconej lakierami olejowymi podwaja czas trwania izolacji; gdy podwyższymy o 8 °C temperaturę, to czas trwania izolacji skraca się o połowę. Pamiętaj o tym, że nawet tak odporne na temperaturę materiały, jak ceramika, szkło mają ograniczoną najwyższą temperaturę pracy ciągłej. Pamiętaj również o tym, że w każdym materiale nie przewodzącym prądu elektrycznego może dojść do przepływu prądu w określonych warunkach (wysoka temperatura, silne pole elektryczne, wilgoć). Każdy materiał izolacyjny posiada bowiem wolne elektrony lub jony, które w pewnych warunkach mogą przewodzić prąd. Tylko w próżni nie ma zupełnie nośników elektrycznych. Jakość izolatorów określa się na podstawie ich właściwości elektrycznych. Jedną z nich jest wytrzymałość na napięcie (przebicie). Przebicie powietrza pomiędzy elektrodami płaskimi odległymi o 1 cm wynosi ponad 30000 V (30,2-31,6 kV). Wytrzymałość na przebicie rośnie proporcjonalnie wraz z ciśnieniem atmosferycznym. Pytania i zadania 1. Wymień urządzenia elektryczne, w których zastosowano izolację z tworzyw sztucznych i materiałów pochodzenia mineralnego. 2. Które urządzenia domowe zawierają układ wysokiego napięcia? Określ w przybliżeniu wysokość napięcia. 3. Czym grozi przebicie izolacji w układzie wysokiego napięcia? 4. W jakich warunkach części izolacyjne domowych urządzeń elektrycznych mogą przewodzić prąd? Czy bezpieczne jest ko­rzystanie w łazience z suszarki do włosów? WYTWARZANIE ENERGII ELEKTRYCZNEJ Prądnice Obecnie najwięcej energii elektrycznej powstaje w uzwojeniach różnych prądnic. Dowiesz się z lekcji fizyki, że w przewodniku powstaje napięcie elektryczne wtedy, kiedy ten przewodnik znajduje się w zmiennym polu magnetycznym. Są możliwe takie sytuacje, że przewodnik porusza się w polu magnetycznym, np. trwałego magnesu, lub odwrotnie - trwały magnes porusza się i wtedy pole magnetyczne zmienia się wokół stojącego przewodnika. Możliwa jest też trzecia sytuacja, że ani magnes, ani przewód nie poruszają się. Dzieje się tak, gdy trwały magnes zastąpimy elektromagnesem i jego uzwojenie jest zasilane zmieniającym się prądem (zmienia się kierunek lub wartość). Wtedy między biegunami elektromagnesu powstanie zmienne pole magnetyczne, które indukuje napięcie elektryczne w nieruchomym przewodzie znajdującym się w tym polu. Według takiej zasady działają transformatory: podwyższają lub obniżają napięcie przemienne. Według pierwszej lub drugiej zasady działają prądnice, i ta mała w Twoim rowerze, i ta wielka w elektrowni. Wiesz na pewno, że każdy samochód musi mieć swoją prądnicę. We współczesnych samochodach prądnice prądu przemiennego zwane są alternatorami. W alternatorach prąd jest wytwarzany w uzwojeniach stojana, tj. w elementach nieobracających się. Natomiast wirnik jest magnesem lub elektromagnesem, do którego prąd elektryczny o małym natężeniu doprowadzany jest przez pierścienie i małe węglowe szczotki. W zależności od obciążenia alternatora, wartość tego prądu jest zmieniana regulatorem elektronicznym. Jest on przymocowany do konstrukcji alternatora, w którego obudowie znajduje się też elektroniczny, diodowy prostownik. Elektroniczne elementy obu tych układów są wrażliwe na zbyt wysokie napięcie. Alternator w swej budowie jest podobny do wielkich prądnic (generatorów) w elektrowniach. Z jego uzwojeń otrzymuje się prąd trójfazowy, tak jak z generatora elektrowni. Silnik sprzężony z prądnicą nazywa się agregatem prądotwórczym, a w elektrowni turbogeneratorem. Same prądnice w czasie swojej pracy nie zanieczyszczają naturalnego środowiska, nie licząc promieniowania elektromagnetycznego, które zawsze towarzyszy przepływowi prądu przemiennego. Natomiast zanieczyszczają środowisko silniki napędzające prądnice. Najbardziej te silniki, dla których nośnikiem energii jest węgiel. Czyste, ekologiczne są elektrownie wykorzystujące energię wiatru, wody i słońca. W naszym kraju w niewielkim stopniu korzysta się z tych źródeł. Pytania i zadania 1. Rozbierz zepsutą prądnicę rowerową, żeby zobaczyć, co się w tej prądnicy obraca: magnes czy cewki. Opisz, jak jest odprowadzone napięcie z cewki prądnicy rowerowej. 2. Czy miniaturowy silnik do zabawek może wytwarzać napięcie przy obracaniu jego wirnika? Jak możesz to sprawdzić praktycznie? 3. Czy prądnica rowerowa wytwarza napięcie przemienne czy stale? Jak możesz to sprawdzić? 4. Czy prądnica prądu stałego może też pełnić funkcję silnika? Ogniwa galwaniczne W 1786 roku Luigi Galvani dokonał słynnego odkrycia, że przy jed­noczesnym dotknięciu mięśnia wypreparowanej kończyny żaby dwoma różnymi metalami połączonymi ze sobą jednym końcem - mięsień kurczy się. Od jego nazwiska wywodzą się nazwy związane z procesa­mi galwanicznymi, np. ogniwo galwaniczne. Pierwszym źródłem energii elektrycznej, które miało praktyczne zastosowania, było źródło chemiczne. Aleksander Volta zbudował w 1800 roku ogniwo galwaniczne, do którego użył kwasu siarkowego jako elektrolitu, a płytek cynkowych i miedzianych jako elektrod. Badał za pomocą tego ogniwa wpływ bodźców elektrycznych na różne narządy. Od jego nazwiska pochodzi nazwa jednostki napięcia elektry­cznego volt (V). Ogniwo, które zbudował, miało napięcie równe 1,1 V. Ogniwo Volty nie miało większego zastosowania w praktyce. Duże zastosowanie praktyczne znalazło dopiero ogniwo Leclanchego. Nazwa pochodzi od nazwiska francuskiego wynalazcy Georgesa Leclanchego, który opatentował je w 1866 roku. W ogniwie Leclanchego elektrodą dodatnią jest specjalnie spreparowany węgiel, elektrodą ujemną cynk, elektrolitem zaś jest roztwór chlorku amonu (salmiaku). Jest to najprostszy, a zarazem najstarszy rodzaj ogniwa stosowany do dziś. Współczesną jego konstrukcję przedstawia rysunek 10. W ogni­wie tym zachodzą procesy chemiczne między cynkiem, chlorkiem amonu i dwutlenkiem manganu, powodując powstanie siły elektromotorycznej (SEM) o wartości 1,5 V. Cechą charakterystyczną ogniwa jest jego pojemność elektryczna mierzona w amperogodzinach. Pojemnością elektryczną ogniwa nazywamy ilość energii elektrycznej, którą może wytworzyć ogniwo na drodze przemian chemicznych aż do chwili jego wyczerpania. Kolejnym parametrem ogniwa jest jego rezystancja wewnętrzna wyrażona w omach. Ogniwo Leclanchego należy do grupy ogniw nieodnawialnych, tzn. że nie można go naładować prądem, tak jak akumulatora. Próba ładowa­nia ogniwa jest niebezpieczna, bowiem grozi wybuchem gazów. Do ogniw nieodnawialnych należą alkaliczne ogniwa manganowe po­wszechnie stosowane jako popularne ogniwa o długim czasie życia (ryc. 11). SEM tego ogniwa wynosi 1,5 V, jego czas życia i pojemność są kilkakrotnie większe niż ogniwa Leclanchego. Inne ogniwa nieodnawialne to: * tlenkowo-srebrowe - stabilne SEM o wartości 1,5 V, drogie; stoso­wane w zegarkach i aparatach słuchowych, * litowe - SEM od 3,8 do 3,0 V, mające bardzo dobry stosunek magazynowanej energii do rozmiarów, długi czas magazynowania (90% pojemności po 5 latach); stosowane jako baterie podtrzymujące (back up batteries) w pamięciach komputerowych o małym poborze mocy. Baterie Bateria jest zbudowana z jednakowych ogniw połączonych szeregowo w celu uzyskania większego napięcia. Na przykład płaska bateria do latarki jest złożona z trzech połączonych szeregowo ogniw Leclanchego. Jej napięcie wynosi 3 x 1,5 V = 4,5 V, a pobór prądu nie powinien przekraczać 0,5 A. Napięcie na zaciskach baterii równa się sumie napięć ogniw. Gdy czerpany prąd jest większy od znamionowego, może powstać gwałtowny spadek napięcia na zaciskach baterii. Szeregowo można łączyć zarówno odnawialne, jak i nieodnawialne źródła energii elektrycznej. Na przykład w akumulatorze samochodowym (odnawialny) jest połączonych szeregowo sześć ogniw kwasowo-ołowiowych, co daje na zaciskach akumulatora 6x2V= 12 V. Rezystancje wewnętrzne ogniw połączonych szeregowo też sumują się tak, jak ich napięcia. Czasami łączy się ogniwa równolegle w celu zwiększenia wydajności prądowej i pojemności bez zwiększania napięcia. Rezystancja dwóch jednakowych ogniw połączonych równolegle równa jest połowie rezystancji jednego ogniwa. Pytania i zadania 1. Opisz budowę wybranego ogniwa galwanicznego. 2. Dlaczego ogniwa nieodnawialne nie mogą być ładowane prądem? 3. Do jakich urządzeń stosujesz baterie? Podaj parametry tych baterii. 4. Od czego zależy pojemność elektryczna baterii, a od czego napięcie? 5. Jak można wykonać baterię 12-woltową z pojedynczych ogniw? 6. W naszym kraju nie zbiera się zużytych baterii w celu ich wykorzystania jako surowca wtórnego. Jakie rozwiązanie zaproponowałbyś, aby zapobiec zatruwaniu środowiska przez zużyte baterie?

materiał izolacyjny stosowany w elektrotechnice